
Improved Unicode support in FontLab Studio 5

Adam Twardoch

Improved Unicode support
in FontLab Studio 5

Frankfurt (Oder), April 2005. Version 1.0

he new generation of FontLab’s professional font editors (FontLab Studio 5
and AsiaFont Studio 5) includes numerous improvements relevant for Unicode
font developers. We present some of the feature highlights: better support for

Unicode 4.1, support for advanced layout technologies (improved OpenType Layout
support and new AAT support), greatly improved class-based kerning and metrics. We
discuss the key improvements in FontLab Studio 5 that are helpful in the process of
designing and developing fonts for Unicode environments. We focus on the issues of
glyph naming and encoding as the crucial prerequisite for creating a functioning Uni-
code-compatible font. We present guidelines for glyph naming and encoding and
discuss two specific case studies that demonstrate their practical application.

 T

Fontlab Ltd. [1] is an international software vendor that has stayed at the forefront
of digital font management by remaining devoted to developing font editors and
typography products. Their full line of products is dedicated to solving the most com-
plex typography issues. These products include: FontLab, AsiaFont Studio, ScanFont,
TypeTool, SigMaker, TransType, CompoCompiler, BitFonter and FONmaker. The Font-
lab Ltd. team works in offices in Canada, Germany, Panama, Russia and USA. With
FontLab Studio 5 and AsiaFont Studio 5, software developers and type designers are
able to create professional-quality Unicode-savvy OpenType fonts: either from new
artwork or by converting their existing font libraries from legacy formats.

Adam Twardoch [2] is Scripting Products and Marketing Manager at Fontlab Ltd. In
addition, Adam serves as typographic consultant to MyFonts.com, as OpenType con-
sultant to Linotype Library, and provides consulting services in font tool develop-
ment, font technology and multilingual typography to other clients worldwide. He
regularly writes and lectures about fonts and typography. He is member of the ATypI
Board and ATypI country delegate for Poland. Born 1975 in Poland, Adam now lives
in Frankfurt (Oder), approximately 80 km east of Berlin.

27th Internationalization and Unicode Conference 1 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

1 Introduction
In 1975, at the ATypI conference in Warsaw, Peter Karow from the Hamburg-based
company URW introduced Ikarus, the world’s first digital type design system that
worked with outline fonts. Ten years later, Adobe created PostScript and the Type 1
font format, which both became standards in publishing. In the early 1990s, Apple
introduced the TrueType font format and the Unicode Consortium published the Uni-
code Standard. Both initiatives laid the foundations for multilingual text processing
and were subsequently implemented in Microsoft Windows and Mac OS. The turn of
the millennium brought about OpenType, a significant initiative that unified Post-
Script, TrueType and Unicode, and added a sophisticated system of advanced typo-
graphic features. The year 2005 marks an unusual anniversary: 30 years of digital
font technology.

The development of the digital font technology makes it easier for end-users to do
text processing, typesetting and layout without sacrificing the typographic quality and
logical correctness of the text. But nothing gets lost in Nature: using fonts is getting
easier but developing them is more complex. Apart from just drawing letters, a type
designer needs to know about encoding, hinting, layout features and various parame-
ters that need to be set inside of a font.

FontLab Studio is an application that assists the font developer in all that: a digital
font editor for Mac and Windows that allows the designer to create professional-level
fonts from start to end. In 2005, Fontlab Ltd. releases FontLab Studio 5, a new ver-
sion of the application. This new release of FontLab Studio 5 brings some major im-
provements that should facilitate the creation of fonts that conform to the Unicode
Standard.

In this paper, we will only discuss the issues of creating Unicode-compatible fonts in
the TrueType and OpenType format. It should be noted, however, that FontLab Stu-
dio also has the ability to create and modify Type 1 and Multiple Master fonts and
legacy-encoded fonts. In addition, AsiaFont Studio has the ability to create and mod-
ify CID-keyed PostScript and OpenType fonts. A general introduction for using Font-
Lab Studio and other FontLab applications can be found in the book Learn FontLab
Fast [3] and in the application’s reference guide [4].

Whenever we speak of a font in this paper, a TrueType or OpenType font is assumed.
This paper will not discuss the OpenType font format in detail. For technical details
regarding the OpenType format, please consult the OpenType specification [5] and
other cited reference works.

One terminological remark needs to be made upfront. The TrueType font format [6]
was defined by Apple Computer and further extended by Microsoft Corporation.
Subsequently, Adobe Systems contributed some extensions to the format already
extended by Microsoft – and the format was renamed to OpenType. In the same
time, Apple Computer developed their own extensions independently retaining the
name TrueType. This paper uses the term OpenType to collectively refer to all fonts
that are compatible with either the OpenType specification or the TrueType specifica-

27th Internationalization and Unicode Conference 2 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

tion. When referring only to the OpenType fonts with PostScript outlines stored in the
CFF table, we use the term OpenType PS. When referring only to the TrueType fonts
and OpenType fonts with TrueType outlines stored in the glyf table, we use the term
OpenType TT. When we refer to the advanced typographic features of OpenType, we
use the term OpenType Layout.

At the time of writing, FontLab Studio 5 has not been released yet. However, the key
concepts presented in this paper equally apply to the currently available version,
FontLab 4.6. Whenever we refer to FontLab Studio, the same remarks usually apply
to the application’s high-end cousin AsiaFont Studio. The main difference between
FontLab Studio and AsiaFont Studio is that the former can only produce fonts that
include less than 6,400 glyphs. AsiaFont Studio can produce fonts with up to 65,535
glyphs.

Figure 1. Three main elements of the FontLab Studio 5 user interface: the Font Window
showing the character set of a font, the Glyph Window for designing the glyph shapes,
and the Metrics Window for setting metrics and kerning.

2 Building Blocks of a Font
The three main elements of FontLab Studio’s user interface are: the Font Window, the
Glyph Window and the Metrics Window. In the Font Window, the user navigates
through the font, assigns names and Unicode codepoints to glyphs, views the glyphs
in various arrangements, and changes their physical arrangement within the font. In

27th Internationalization and Unicode Conference 3 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

the Glyph Window, the user creates and modifies the appearance of a glyph, by
drawing the glyph’s outlines or assembling the glyph from existing parts. In the Met-
rics Window, the user specifies the appearance of the glyphs when they are arranged
on a page, that is, modifies the glyphs’ metrics and defines kerning. In additional,
FontLab Studio includes a number of panels and toolbars that provide additional
functionality.

FontLab Studio’s Font Window is the table of contents of a font. All the glyphs in-
cluded in the font are displayed in a cell grid. Each font is a sequence of glyphs
numbered with consecutive indexes (GIDs): 0, 1, 2, 3 etc. The number of glyphs in a
font, and their ordering, may differ from font to font. A typical Western font contains
between 200 and 300 glyphs, an Asian font can have 50,000 glyphs or more (note
that such large fonts can only be processed with AsiaFont Studio, not FontLab Stu-
dio). Glyphs in digital fonts are constructed out of outlines (curves and straight seg-
ments). A glyph can also include components: a closed portion of the outline can be
constructed as a reference to another glyph present in the same font.

As mentioned above, each glyph in a font is uniquely identified by a glyph index
(GID). FontLab Studio also requires that every glyph in the font has a glyph name. The
glyph name is visible and can be modified in the glyph’s Properties panel. To open the
Properties panel, click on a glyph and choose from the menu: Edit / Properties. Note
that the glyph name must not be confused with the Unicode character name! A de-
tailed discussion of glyph naming is included later in this paper.

FontLab Studio follows the character-glyph model defined by the Unicode Standard
[7]. Each glyph may be associated with one or more Unicode codepoints. The Unicode
codepoints are also visible and can be modified in the Properties panel. In FontLab
Studio 5, the Unicode codepoints are expressed using hexadecimal digits.

In FontLab 3.0, the Unicode support was limited to the first 65,535 codepoints (the
Basic Multilingual Plane, BMP), or to four-digit Unicodes. In FontLab 4.6, experimen-
tal support for higher Unicodes (SMP, Supplementary Multilingual Planes) was added,
but it never worked correctly. FontLab Studio 5 can finally create fonts that are fully
compatible with the Unicode Standard version 4.1 – Unicode codepoints with 4, 5,
or 6 digits are equally well supported.

The glyphs in the Font Window can be presented in different arrangements, depend-
ing on the Font Window mode selected. The Index mode displays the physical se-
quence of the glyphs in the font, ordered by GIDs. The Names mode arranges glyphs
according to a so-called “encoding”. “Encoding” is a list of glyph names ordered in a
particular sequence. The term “encoding” is a bit misleading: when developing a
Unicode font, the “encoding” selected in the Names mode does not represent the
actual encoding of the font. The Names mode is used to help the designer navigate
through the glyph repertoire of a font. When a certain “encoding” is selected, the
glyphs covered by that encoding are presented at the top of the window, highlighted
in yellow color. The designer can easily create custom encodings and use them to
switch between different views of the entire glyph repertoire of the font.

27th Internationalization and Unicode Conference 4 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

Figure 2. Index mode of the Font Window. A font is just a sequence of enumerated
glyphs, each glyph has a name and (often) a Unicode codepoint assigned.

Figure 3. Names mode of the Font Window. For Type 1 fonts, it represents the font’s
encoding. For TrueType and OpenType fonts it’s just a handy glyph browser.

Figure 4. Codepage mode of the Font Window. When a glyph is missing, a template
image is displayed.

27th Internationalization and Unicode Conference 5 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

The Font Window has two more modes – the Unicode mode and the Codepage mode
– that work analogically to the Names mode. The Unicode mode can filter glyphs by
Unicode range, the Codepage holds a huge number of legacy codepages that can be
used to view glyphs in a particular arrangement.

3 Glyph Naming and Encoding

3.1 General provisions

Theoretically, the OpenType specification permits the designer not to supply any
glyph names at all (at least in case of OpenType TT fonts). However, realistically, it is
essential to create fonts with glyph names that fulfill the recommendations detailed
below.

When fonts are embedded in electronic documents or sent to a printer, under some
circumstances only the information about the glyphs (their GIDs, names and outlines)
are retained, while the encoding information (the associated Unicode codepoints) is
lost. The electronic document “looks right” but the underlying text streams are ob-
scured or not available. In such cases, meaningfully constructed glyph names can be
used as a help to rebuild or at least approximate the original text. A practical exam-
ple: the user creates a text document that uses an OpenType PS font. The document is
printed to a PostScript file. Since PostScript does not support OpenType PS, the font is
embedded in the print stream as Type 1. The OpenType information such as layout
tables or Unicode codepoints is lost. If Acrobat Distiller is used to convert the Post-
Script file to a PDF document, the application first tries to locate the original Open-
Type PS font on the user’s system: if the font is found, Distiller is able to use its origi-
nal Unicode codepoints and embed them in the PDF document. But if the original
OpenType PS font is not available to Distiller (for example because the PS-to-PDF
conversion happens on a different machine), Distiller embeds the Type 1 font found
in the PostScript stream, with no Unicode information. Now, when the text in the PDF
document is being searched, copy-pasted or otherwise extracted by an application
such as Acrobat or Google, the application can attempt to rebuild the Unicode code-
points basing on glyph names included in the embedded Type 1 font. For Latin or
Cyrillic scripts, the recreated text will likely be a very close match of the original; for
Thai or Hindi, the text recreated that way will probably be only a crude approxima-
tion, with letters arranged in incorrect sequence, and some information missing. But
yet, some is often better than nothing.

Users of the Unicode Standard familiar with the character-glyph model know that the
relationship between glyphs and characters is not a simple one-to-one mapping.

A glyph in a font can represent the default form of a character. Such glyph needs to
have the Unicode codepoint of the represented character assigned. For example, the
glyph with the GID 4 representing the character $ (U+0024, DOLLAR SIGN) has the
Unicode codepoint 0024 assigned in the Unicode field of the Properties panel. The
glyph’s name is dollar.

27th Internationalization and Unicode Conference 6 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

A glyph in a font can also represent a variant form of a character. For example, a font
can include a glyph that represents the default form of the character a (U+0061,
LATIN SMALL LETTER A) as well as glyphs that depict stylistic variants of that character: a
small-cap variant, a swash variant, etc. The glyph that represents the default form
should have the name a and the Unicode codepoint 0061 assigned in the Properties
panel. The variant glyphs should different names constructed according to guidelines
outlined below. An appropriate OpenType Layout feature [8] should allow the font
user to produce the particular variant on the screen – the use of an application and
operating system that supports OpenType Layout features is a prerequisite. To allow
the user access to the variant glyphs in applications that support Unicode but do not
support OpenType Layout features, each of the glyphs may have a PUA (Private Use
Area) Unicode codepoint assigned – but they may also remain unencoded.

A glyph in a font can represent the default form of more than one character. Here,
several cases need to be differentiated.

First, several characters can have identical appearance, so the same glyph could serve
as the default representation of each of those characters. In such case, the Unicode
codepoints of all the represented characters are entered in the Unicode field of the
Properties panel, separated by spaces. For example, the glyph with the GID 66 with
the shape of the letter a could represent two characters: U+0061 (LATIN SMALL LETTER
A) and U+0430 (CYRILLIC SMALL LETTER A). In this case, the Unicode field in the Prop-
erties panel would have the entry 0061 0430. The glyph name is a. Generally how-
ever, assigning multiple Unicode codepoints to one glyph is not recommended, in
particular when creating OpenType PS fonts. The designer should rather duplicate the
glyphs, assigning no more than one Unicode index to each of them (note that one of
the glyphs can refer to the other one as a component).

Another case is that one glyph represents several Unicode characters at a time. For
example, the glyph Ẹ́ represents an accented character LATIN CAPITAL LETTER E WITH
ACUTE AND DOT BELOW (used in African languages such as Yoruba). This character does
not have its own codepoint in the Unicode Standard so it needs to be encoded as a
series of characters. It is encoded as E, followed by dot below, followed by acute
(U+0045 U+0323 U+0301). Another example is the glyph ffk which is a ligature
of f followed by f followed by k (U+0066 U+0066 U+006B). In such cases, again,
the appropriate OpenType Layout features must be used to produce the glyphs. The
glyph name should be constructed accordingly and the glyph may have a PUA Uni-
code codepoint assigned.

The following sections present a summary of the Adobe/FontLab glyph naming guide-
lines. There guidelines unify recommendations by Adobe Systems [9] and those by
Fontlab Ltd.

3.2 Glyph name limitations

A glyph name must not be longer than 31 characters. The glyph name consists of a
basename, optionally followed by a period (.) which is then followed by a suffix.
Both the basename and the suffix may only include: uppercase English letters (A-Z),

27th Internationalization and Unicode Conference 7 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

lowercase English letters (a-z), European digits (0-9), and underscore (_). Other char-
acters such as spaces are not permitted! A glyph name must start with a letter or the
underscore character – with the exception of the special glyph name “.notdef” that
starts with the period. For example, “twocents”, “a1”, and “_” are valid glyph names,
while “2cents” and “.twocents” are not.

3.3 Simple glyph names

Review the Adobe Glyph List for New Fonts (AGLFN) [10]. If your glyph represents a
character listed in AGLFN, use the glyph name listed there. Instead of using arbitrary
names (e.g. “middot”), use standardized names listed in AGLFN (“periodcentered”).

Review the Unicode Standard code charts. If your glyph represents a default form of
a character encoded in the Unicode Standard but not listed in AGLFN:

a) for BMP codepoints, use the name “uniXXXX”, that is lowercase “uni” followed by
a four-digit Unicode codepoint written using uppercase hexadecimal digits. Note that
“uni” must be lowercase and XXXX must use uppercase letters for hexadecimal digits,
so “uni01EB” is a vaild glyph name but “uni01eb” or “Uni01Eb” are not.

b) for SMP codepoints, use the name “uXXXXX” or “uXXXXXX”, that is lowercase “u”
followed by 5 or 6 uppercase hexadecimal digits representing the codepoint.

3.4 Glyph names with suffix

If your glyph represents an alternate form of a character that is encoded in the Uni-
code Standard or is listed in AGLFN, use the glyph name of the basic form as the
basename, followed by a period, followed by a suffix.

For the suffix, use the name of the OpenType Layout feature that you would most
likely access that glyph through.

For example, for a small-caps A, use “A.smcp”, for a stylistic alternate R use “R.salt”,
for a swash Q use “Q.swsh”, for a superior m use “m.sups”, for a tabular 5 use
“five.tnum” etc. If there are multiple OpenType Layout features that can be used to
access a glyph, pick one of your likings.

3.5 Compound glyph names

If your glyph represents a “compound character”, i.e. a ligature or an accented char-
acter that does not have a precomposed Unicode codepoint, and if the character is
not explicitly listed in AGLFN or the Unicode Standard, construct the compound glyph
name as follows.

For each element of the compound character, take the basename (or the entire glyph
name if there is no suffix). Concatenate these using underscore to make the com-
pound basename.

27th Internationalization and Unicode Conference 8 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

For each element of the compound glyph that has a suffix, concatenate the suffixes
using underscore to make the compund suffix. You may eliminate duplicate suffix
elements.

For example, for a ligature of the glyphs “c” and “t”, use “c_t” as glyph name. For a
ligature of the glyphs “f”, “f” and “i”, use “f_f_i” as glyph name. For a ligature of
“longs” and “i” use “longs_i” as glyph name. For a ligature of the glyphs “F.smcp”,
“F.smcp” and “I.smcp”, use “F_F_I.smcp” as glyph name. For a ligature of the glyphs
“R.salt” and “s.sups”, use “R_s.salt_sups” as glyph name. For the African Ẹ́ character
use the glyph name “E_dotbelowcomb_acutecomb”.

If each element of a compound glyph name represents a BMP character, you can use
an alternative way of building the basename, which can potentially produce a shorter
glyph name. The glyph name starts with “uni” and must be followed by unseparated
groups of four uppercase hexadecimal digits representing the BMP codepoint of each
element. So instead of “E_dotbelowcomb_acutecomb”, you can use the name
“uni004503230301”.

Remember that a glyph name should be no longer than 31 characters, so you may
need to abbreviate the name if needed.

3.6 Symbol glyph names

If a glyph does not represent a Unicode character, but rather is an ornament, a non-
textual symbol etc., you can use a glyph name of your liking (but adhering to the
limitations outlined in 3.2). If you assign PUA codepoints to these glyphs, you can
create the glyph names using the “uniXXXX” scheme, where XXXX represents the PUA
codepoint.

3.7 Additional naming guidelines

Refer to the Adobe guidelines [9] for additional guidelines on making glyph names,
especially for creating complex glyph names that involve “uniXXXX” and “uXXXXX”
glyph names as elements.

3.8 Proper Unicode codepoints

Refer to the Unicode Standard code charts and assign proper Unicode codepoints to
the glyphs discussed in 3.3.

As discussed above, if the more than one Unicode character share the same glyph
shape, two approaches are theoretically possible:

a) create multiple glyphs with identical content but different names, and assign one
Unicode codepoint per glyph; for example, create a “periodcentered” glyph and en-
code it as U+00B7, and create a “uni2219” glyph and encode it as U+2219. One of

27th Internationalization and Unicode Conference 9 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

the glyphs can refer to the other one as a component. This is the approach recom-
mended by Fontlab Ltd. for OpenType fonts, in particular for OpenType PS fonts.

b) alternatively, either assign multiple Unicode codepoints to your glyph; for exam-
ple, for “periodcentered”, assign U+00B7 and U+2219.

3.9 Private Use Area codepoints

For glyphs discussed in 3.4 – 3.6, you may assign custom codepoints from the Uni-
code Private Use Area (PUA): from U+E000 to U+F8FF. However, you also may
choose to leave these glyphs unencoded (not assign any codepoints).

For some applications (e.g. Microsoft Word 2003 for Windows), assigning PUA code-
points may be the only way to display such glyphs in your font, so it is practical to
assign PUA codepoints. On the other hand, PUA codepoints are completely custom, so
there is no way that exchangeability of documents can be guaranteed. Also, the text
that is set using PUA codepoints is “garbled” (spelling, hyphenation, search & replace
won’t work). So this is only a short-sighted interim measure.

Some font developers (e.g. Adobe) assign PUA codepoints to glyphs that do not have
proper Unicode codepoints, while others (Microsoft, Bitstream, Linotype, Tiro Type-
works) leave the glyphs unencoded.

3.10 Case study I: The tcedilla vs. tcommaaccent confusion

During the development of the Unicode Standard, some confusion was introduced
with regard to glyphs that involve the cedilla and the commaaccent acccents. The
case study below illustrates the relation between Unicode codepoints, Unicode char-
acter names, glyph names and the actual glyph design.

Use C/c with a connecting cedilla accent below for Turkish:
Glyph name: Ccedilla, Unicode: 00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)
Glyph name: ccedilla, Unicode: 00E7 (LATIN SMALL LETTER C WITH CEDILLA)

Use S/s with a connecting cedilla accent below for Turkish:
Glyph name: Scedilla, Unicode: 015E (LATIN CAPITAL LETTER S WITH CEDILLA)
Glyph name: scedilla, Unicode: 015F (LATIN SMALL LETTER S WITH CEDILLA)

Use S/s with disconnected undercomma accent for Romanian:
Glyph name: Scommaaccent, Unicode: 0218 (LATIN CAPITAL LETTER S WITH COMMA BE-
LOW)
Glyph name: scommaaccent, Unicode: 0219 (LATIN SMALL LETTER S WITH COMMA BELOW)

Make duplicate glyphs Tcommaaccent/uni021A and tcommaaccent/uni021B with
mappings listed below. Use T/t with disconnected undercomma accent for Romanian
in both these cases.
Glyph name: Tcommaaccent, Unicode: 0162 (LATIN CAPITAL LETTER T WITH CEDILLA)
Glyph name: uni021A, Unicode: 021A (LATIN CAPITAL LETTER T WITH COMMA BELOW)

27th Internationalization and Unicode Conference 10 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

Glyph name: tcommaaccent, Unicode: 0163 (LATIN SMALL LETTER T WITH CEDILLA)
Glyph name: uni021B, Unicode: 021B (LATIN SMALL LETTER T WITH COMMA BELOW)

Alternatively, create Tcommaaccent with two Unicode codepoints assigned (0162,
021A) and tcommaaccent with two Unicode codepoints assigned (0163, 021B).

As an alternative approach, you may choose to design a hybrid disconnected accent
that serves as both cedilla and commaaccent. Please refer to the Microsoft Diacritics
Design Standards document [11].

Short: call your glyphs “something-cedilla” when they use cedilla and “something-
commaaccent” when they use commaaccent. Supply C and S with cedilla for Western
and Turkish and G, K, L, N, R, S, T with commaaccent for Romanian and the Baltic
languages.

3.11 Case study II: No precomposed Unicode codepoints

As explained in 3.1, characters such as LATIN CAPITAL LETTER E WITH DOT BELOW AND
COMBINING ACUTE ACCENT (Ẹ́) do not have a precomposed Unicode value. The glyph
that represents such a character needs special treatment – the font must include an
OpenType Layout feature that maps the composite codepoints to the actual glyph.

To include such a font in your OpenType font, you will need to create the Canonical
Composition/Decomposition OpenType feature (ccmp) [12]. First, the “ingredients” of
the character must be identified. LATIN CAPITAL LETTER E WITH ACUTE AND DOT BELOW
consists of the LATIN CAPITAL LETTER E, COMBINING DOT BELOW and COMBINING ACUTE AC-
CENT:

– U+0045 (LATIN CAPITAL LETTER E), glyph name E
– U+0323 (COMBINING DOT BELOW) glyph name dotbelowcomb
– U+0301 (COMBINING ACUTE ACCENT) glyph name acutecomb

The canonical decomposition of the character, i.e. the Unicode Normalization Form D
(NFD) of the character is: U+0045 U+0323 U+0301. This is the „default” form in
which the character should be represented in the text. According to the glyph naming
guidelines detailed above, the name of the glyph Ẹ́ could be uni004503230301 or
E_dotbelowcomb_acutecomb. We will choose the first one for brevity.

In addition to the canonical components of the character, we should consider that
parts of the character do exist in the Unicode standard in precomposed form:

– U+00C9 (LATIN CAPITAL LETTER E WITH ACUTE), glyph name Eacute
– U+1EB8 (LATIN CAPITAL LETTER E WITH DOT BELOW) glyph name uni1EB8

We should not assume that all Unicode texts in which we want to use our character
will exist in canonically decomposed NFD form. Therefore, we should make provisions
for all possible combinations of Unicode characters that can represent our LATIN CAPI-
TAL LETTER E WITH DOT BELOW AND COMBINING ACUTE ACCENT character. This means that
our font should contain all of the following glyphs: E, dotbelowcomb, acutecomb, Ea-
cute, uniEB8.

27th Internationalization and Unicode Conference 11 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

This also means that the final character can be a combination of the following:

– U+0045 U+0323 U+0301 (glyphs: E dotbelowcomb acutecomb)
– U+0045 U+0301 U+0323 (glyphs: E acutecomb dotbelowcomb)
– U+00C9 U+0323 (glyphs: Eacute dotbelowcomb)
– U+1EB8 U+0301 (glyphs: uni1EB8 acutecomb)

To create the glyph for the character LATIN CAPITAL LETTER E WITH DOT BELOW AND COM-
BINING ACUTE ACCENT in FontLab Studio 5 choose Glyph / Generate Glyphs and type in
the following:

E+dotbelowcomb+acutecomb=uni004503230301

Finally, refine the design of the glyph (adjust the positioning of the diacritics as re-
quired). Open the OpenType panel (Window menu), add a new feature and in the
feature definition code field, type in the following:

feature ccmp {
 sub E dotbelowcomb acutecomb by uni004503230301;
 sub E acutecomb dotbelowcomb by uni004503230301;
 sub Eacute dotbelowcomb by uni004503230301;
 sub uni1EB8 acutecomb by uni004503230301;
} ccmp;

Click on the Compile button, then on the Open Preview Panel button. In the OpenType
Preview panel that opens, activate the ccmp feature and type in the following:

\u0045\u0323\u0301 \u0045\u0301\u0323 \u00C9\u0323 \u1EB8\u0301

to test your new character.

Generate the font as Win TrueType / OpenType TT (.ttf) or as OpenType PS (.otf), in-
stall it in the system and in Microsoft Word 2003 for Windows (or newer) and test
your new character: type in the hexadecimal codes of the composite codepoints and
press Alt-X after each of them. Alternatively, use the Character Map application or a
custom keyboard driver.

Figure 5. The OpenType layout feature definitions are stored in the OpenType panel us-
ing the Adobe FDK for OpenType notation

27th Internationalization and Unicode Conference 12 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

The technique described above should be applied accordingly to other glyphs that
represent characters that do not have precomposed codepoints. The same technique
should be applied to building ligatures, except that the mapping of the component
glyphs to the ligature glyphs should not be done in the ccmp feature but in the ap-
propriate ligature features (liga, dlig, hlig). Please refer to the OpenType Layout fea-
tures registry for details [13].

4 Designing Glyphs

4.1 Glyph Window

The Glyph Window is the place where the designer creates the letterforms. This is
where you see the glyph outline (built from nodes, sometimes called points, as well
as straight and curve segments between them), hints, glyph and font metrics, guide-
lines. A number of different toolbars and panels are available to the user: the Tools
and Paint toolbars hold various tools for creating, editing and modifying outlines, the
meter toolbar displays the position of the currently selected node and the cursor po-
sition – in relation to the (0,0) point and, optionally, in relation to a special reference
point that the designer can put anywhere within the drawing space.

The Transformation panel (available from the Window / Panels submenu) allows for
precise geometric transformation (scaling, shifting, slanting, rotating). When you’re
doing free transformations by just dragging parts of the outline with your mouse, the
Transformation will detect if you’re scaling, slanting or rotating, and will automati-
cally display the numerical value of what you are currently doing.

The Editing Layers panel allows the designer to edit different elements of the glyph:
its outline, the metrics (the left and the right sidebearing), the guidelines, the hints,
and the mask, that is, a second outline layer placed in the background.

In the past, type designers used many different tools – Ikarus, Font Studio, Fontogra-
pher, and previous versions of FontLab. Many of these users developed very strong
habits as for how certain things should work. Since most of these tools are no longer
being developed, FontLab Studio 5 includes options that make the look-and-feel
more familiar for users of other tools. The user can control many aspects of what the
Glyph Window looks like: control the size and color of nodes, the smoothing of out-
lines, decide whether to show connection marks or to fill the outlines.

Something completely new to FontLab Studio 5 is in-context editing. FontLab 4.6
users know the mask layer where the designer can place an additional outline for
reference. In FontLab Studio 5, a new kind of dynamic masks are introduced: shape
groups and neighbors. The shape groups layer displays a number of semi-transparent
glyphs stacked behind the outline of the current glyph. The neighbors layer shows
glyphs left and right of the current outline. The composition of shape groups and
neighbors changes automatically for each glyph that you edit, and naturally, this
composition can be fully customized.

27th Internationalization and Unicode Conference 13 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

Figure 6. The Glyph Window is the heart of FontLab Studio 5.

4.2 Alternative ways to add glyphs

Until now, autotracing was a feature unique to Fontlab Ltd.’s separate product, Scan-
Font. While ScanFont still remains useful as it can quickly and automatically separate
an entire scanned alphabet into single characters, FontLab Studio 5 has a built-in
Trace feature. The user can place a black-and-white bitmap of a character into the
Background layer and FontLab Studio 5 will convert it into an outline, with custom-
izable precision. FontLab Studio 5 can also import illustrations saved in EPS format. If
you prefer to draw in Illustrator or Freehand, remember to save your EPS in Illustra-
tor 6 or Illustrator 8 format rather than any of the newest formats. FontLab will then
have less trouble in importing the EPS.

The cells that represent glyphs missing from your font have a gray background and a
glyph template image that you can use as orientation for your design. FontLab Stu-
dio 5 includes a new, very extensive glyph template font provided by Monotype Im-
aging [14]. It is a one-size bitmap version of Andale Mono WTG that provides low-
resolution character previews for the entire Unicode 3.2 character range.

27th Internationalization and Unicode Conference 14 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

Figure 7. The new glyph template font (Andale Mono, provided by Monotype Imaging)
covers the entire Unicode 3.2 character range and provides small-scale thumbnails for
characters that are not included in the current font.

When adding glyphs to your font, you can use the thumbnail images from the glyph
template as guidance. Note that the provided thumbnail templates do not necessarily
reflect all the typographical finesse of the respective characters – they should be used
as orientation only. Of course, as with most elements of the user interface, this glyph
template font can be customized: the user can specify a different font to be displayed
as the glyph template font.

FontLab Studio 5 has a new handy tool that allows the designer to quickly create a
set of accented characters. Select certain Unicode range (such as Latin Extended-A),
right-click on any glyph and choose Select Encoding from the context menu, and fi-
nally choose Glyph / Create Glyphs if Empty”. A set of stub accented characters will be
automatically created from elements that are present in the font. FontLab Studio 5
comes with a large set of “recipes” on how accented characters should be built –
which composites to use and how to place them. The user can modify and extend
these recipes.

27th Internationalization and Unicode Conference 15 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

Figure 8. If your font is missing some accented characters, FontLab Studio 5 will at-
tempt to create them for you.

5 Letterspacing and Kerning
The Metrics Window probably includes the most important changes in FontLab Stu-
dio 5. In the Classes panel, the user can associate similar glyphs into classes. Kerning
classes are used to associate glyphs that can share the same kerning values. FontLab
Studio 5 includes a brand-new automatic class builder: the software analyzes the
shapes of the glyphs included in the font and finds glyphs that are similar on the left
side or on the right side. These glyphs are automatically associated into classes. For
example, a kerning class _B can include a number of glyphs that are similar in shape
on their left side (B, D, F, H, I etc.). They can use the same kerning value if one of
them appears as the second glyph in a kerning pair. With such kerning class in place,
the user only needs to define kerning pairs for one of the glyphs (for example B,
which is the so-called key glyph). The other glyphs will automatically receive the
same kerning values on their left side.

Next page: Figure 9. New Metrics and Kerning editing in FontLab Studio 5
(illustration by Luc(as) de Groot)

27th Internationalization and Unicode Conference 16 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

27th Internationalization and Unicode Conference 17 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

In place of the old Metrics Window with just one line of text, the new Metrics Win-
dow is a multiline text editor so the user can see the whitespace distribution not only
between characters but also between lines of text. The Metrics Window has four
modes that you choose using the four buttons on the top left of the window: Text,
Preview, Metrics and Kerning. The Text mode works like a little text editor: you can
type any text, select, copy and paste. The Preview mode removes all unnecessary
lines and marks so you can look at your typeface, and print a sample from the win-
dow.

6 OpenType Layout support
To create OpenType layout features in FontLab, the user puts the feature definitions in
FontLab’s OpenType panel using source notation defined by Adobe Systems. When
FontLab generates an OpenType PS or OpenType TT, it compiles the notation into
binary OpenType tables using programming code licensed from Adobe Systems – the
same code that is included in the Adobe FDK for OpenType. Unlike the Adobe FDK,
FontLab is able to do the reverse: to open an OpenType font containing the binary
OpenType layout tables and to decompile them into the source notation.

When FontLab 4.6 opens an OpenType, it always decompiles the features, which has
turned out to be a limitation. The Adobe FDK for OpenType code does not support
certain aspects of the OpenType specification such as the mark-to-base and mark-to-
mark GPOS positioning lookups that are extensively used in Arabic, Hebrew and Indic
OpenType fonts. When a user opens such font in FontLab 4.6, performs some mini-
mal modifications and tries to generate a new font, FontLab will fail. It cannot re-
compile the features since they include unsupported lookup types. There is no easy
workaround for that problem but fortunately, it is fixed in FontLab Studio 5. The new
FontLab version has options that control whether to store the OpenType binary tables
and whether to interpret them when opening an OpenType font. With both options
enabled, FontLab will decompile the feature definitions and also store their binary
form. When the user re-generates the font, FontLab Studio asks him which version of
the tables (binary or compiled) to include. The user can also enable just one of the
options – in this case he will not be asked when generating the final font.

In Microsoft Windows XP, OpenType PS fonts with the .otf extension are always dis-
played using the green OpenType icon (“O”). OpenType TT fonts with the .ttf exten-
sion are shown using the blue TrueType icon (“TT”) by default. Windows will only
display the green OpenType icon for a .ttf font if the font includes a digital signature.
Font developers should add digital signatures to their font to certify the authorship of
the font. A user of an OpenType font by, for instance, Linotype Library can be sure
that the font is a genuine Linotype font if it contains a Linotype digital signature. Un-
til now, adding digital signatures was cumbersome: it required using a bunch of
command-line tools running only on Microsoft Windows. FontLab Studio 5 has built-
in support for digital signatures so the font developer only needs to buy a “code sign-
ing” digital certificate from a company such as Thawte or Verisign, starting at 200
USD/year,

27th Internationalization and Unicode Conference 18 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

FontLab Studio 5 also includes another innovative feature: it can convert selected
Apple GX/AAT typographic features (if present in the font) to OpenType Layout fea-
tures [15].

FontLab Studio’s abilities to create OpenType Layout features are currently limited to
GSUB substitution features, and kerning. Advanced GPOS positioning used in complex
scripts (Arabic, Indic scripts) is not directly supported. However, FontLab Studio 5
provides convenient integration with Microsoft Visual OpenType Layout Tool (VOLT)
[16], a free application that can be used to create complex OpenType Layout fea-
tures. The designer can use FontLab Studio to design the glyphs, assign Unicode co-
depoints and generate the font; later, he can open the font in VOLT and add the
OpenType features there. For more information about creating OpenType features for
complex scripts, please consult the specifications published at the Microsoft Typogra-
phy website [17].

7 Other features
A common scenario for creating multilingual OpenType fonts is that the user has sev-
eral Type 1 fonts designed in the past, each of them including a part of the desired
character set. For example, there can be a Roman font, a Central European font, a
Cyrillic font, a small caps font and a font with old-style numerals. FontLab Studio
includes some new features useful in such a conversion process. In your Type 1 small-
cap font, the small cap glyphs are probably named a, b, c... but in the OpenType font,
such glyph names already exist (for lowercase letters) so your small caps should get
different names, e.g. a.smcp, b.smcp, c.smcp etc. With Add Suffix to Name, the user can
append a particular name suffix to selected glyphs. With Tools / Merge Fonts, the user
can copy all glyphs (or just the ones with the unique names) from one font to an-
other including kerning pairs.

A feature often requested by users of the 4.6 version was improved font proofing.
FontLab Studio 5 has greatly extended printing capabilities. The user can print vari-
ous samples of single glyphs or the entire font including metric information. There is
also a new Quick Test feature: FontLab Studio generates the current font in OpenType
PS or OpenType TT format (taking the current export Options into account), installs it
temporarily and shows a little text editor window. The user can populate the contents
of selected codepages or the entire font character set into the Quick Test window, but
can also paste arbitrarily long texts from the clipboard. The Quick Test window dis-
plays fonts using the system font mechanism, so on Windows XP Service Pack 2 with
complex script support enabled in Control Panel / Regional and Language Options / Lan-
guages, the user can test OpenType layout features such as ligatures or contextual
alternates.

The Font Info dialog that acts as the command central of the font has several new
handy features. With the Copy feature, the user can quickly copy family names, copy-
right strings, licensing information, metric and encoding information from one font to
all the other fonts in a family. A new Verify names button in the Names and Copyright
section will check for common name problems like too long names or PostScript font

27th Internationalization and Unicode Conference 19 Berlin, Germany, April 2005

Improved Unicode support in FontLab Studio 5

names with two hyphens. The Embedding settings have been updated to reflect the
recent OpenType specification. The algorithm that automatically checks codepages
and Unicode ranges included in the font has been improved. A new cmap editor has
been added so OpenType and TrueType fonts with very complex encodings can be
created.

8 Closing remarks
This paper only covers a small subset of issues regarding the process of creation of
Unicode-compatible fonts. A detailed discussion on specific aspects would have not
fit in the scope. We shall however mention some of the most important points and
limitations. FontLab Studio 5 does not offer a full bidirectional support. However, the
key elements of the user interface such as the Metrics Window support right-to-left
rendering as well as (to some extent) vertical rendering.

The final Windows version of FontLab Studio 5 is expected to be released in the
spring of 2005, with the Mac version to follow a few months later. The information
will be announced on http://www.fontlab.com

27th Internationalization and Unicode Conference 20 Berlin, Germany, April 2005

http://www.fontlab.com/

Improved Unicode support in FontLab Studio 5

9 References

[1] Fontlab Ltd. http://www.fontlab.com/

[2] Adam Twardoch. http://www.twardoch.com/adam/

[3] Leslie Cabarga: Learn FontLab Fast. Iconoclassics, Los Angeles 2004.
http://www.logofontandlettering.com/

[4] Fontlab Ltd.: FontLab Studio User’s Manual. http://www.fontlab.com/

[5] Adobe Systems, Microsoft Corp.: The OpenType specification.
http://www.microsoft.com/typography/otspec/

[6] Apple Computer: TrueType Reference Manual.
http://developer.apple.com/fonts/TTRefMan/

[7] The Unicode Standard. http://www.unicode.org/

[8] Adobe Systems: OpenType, Advanced Typography.
http://store.adobe.com/type/opentype/#adv

[9] Adobe Systems: Unicode and Glyph Names.
http://partners.adobe.com/public/developer/opentype/index_glyph.ht
ml

[10] Adobe Systems: Adobe Glyph List For New Fonts.
http://partners.adobe.com/public/developer/en/opentype/aglfn13.txt

[11] Microsoft Corp: Microsoft Character Design Standards.
http://www.microsoft.com/typography/developers/fdsspec/

[12] Microsoft Corp.: ccmp OpenType Layout feature.
http://www.microsoft.com/typography/otspec/features_ae.htm#ccmp

[13] Microsoft Corp.: OpenType Layout features registry.
http://www.microsoft.com/typography/otspec/featurelist.htm

[14] Monotype Imaging. http://www.monotypeimaging.com/

[15] Apple Computer: Comparing GX Line Layout and OpenType layout.
http://developer.apple.com/fonts/WhitePapers/GXvsOTLayout.html

[16] Microsoft Corp.: Microsoft VOLT
http://www.microsoft.com/typography/developers/volt/

[17] Microsoft Corp.: Typography Specifications
http://www.microsoft.com/typography/SpecificationsOverview.mspx

27th Internationalization and Unicode Conference 21 Berlin, Germany, April 2005

http://www.fontlab.com/
http://www.twardoch.com/adam/
http://www.logofontandlettering.com/
http://www.fontlab.com/
http://www.microsoft.com/typography/otspec/
http://developer.apple.com/fonts/TTRefMan/
http://www.unicode.org/
http://store.adobe.com/type/opentype/#adv
http://partners.adobe.com/public/developer/opentype/index_glyph.html
http://partners.adobe.com/public/developer/opentype/index_glyph.html
http://partners.adobe.com/public/developer/en/opentype/aglfn13.txt
http://www.microsoft.com/typography/developers/fdsspec/
http://www.microsoft.com/typography/otspec/features_ae.htm#ccmp
http://www.microsoft.com/typography/otspec/featurelist.htm
http://www.monotypeimaging.com/
http://developer.apple.com/fonts/WhitePapers/GXvsOTLayout.html
http://www.microsoft.com/typography/developers/volt/
http://www.microsoft.com/typography/SpecificationsOverview.mspx

	1 Introduction
	2 Building Blocks of a Font
	3 Glyph Naming and Encoding
	3.1 General provisions
	3.2 Glyph name limitations
	3.3 Simple glyph names
	3.4 Glyph names with suffix
	3.5 Compound glyph names
	3.6 Symbol glyph names
	3.7 Additional naming guidelines
	3.8 Proper Unicode codepoints
	3.9 Private Use Area codepoints
	3.10 Case study I: The tcedilla vs. tcommaaccent confusion
	3.11 Case study II: No precomposed Unicode codepoints
	4 Designing Glyphs
	4.1 Glyph Window
	4.2 Alternative ways to add glyphs

	5 Letterspacing and Kerning
	6 OpenType Layout support
	7 Other features
	8 Closing remarks
	9 References

